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Periodic orbits and topological entropy of delayed maps
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The periodic orbits of a nonlinear dynamical system provide valuable insight into the topological and metric
properties of its chaotic attractors. In this paper we describe general properties of periodic orbits of dynamical
systems with feedback delay. In the case of delayed maps, these properties enable us to provide general
arguments about the boundedness of the topological entropy in the high delay limit. As a consequence, all the
metric entropies can be shown to be bounded in this limit. The general considerations are illustrated in the
cases of Bernoulli-like and Hen-like delayed maps.
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[. INTRODUCTION age amount of information stored during the memory tifhe
and this explains also the independence of the entropy with
As the mechanism of retarded feedback is present in akespect to the delay time.
most all situations associated with finite propagation times, More recently, delayed systems with nonlinear instanta-

delayed differential equations of the form neous coupling are investigatgtil] [systems for which the
first term on the right-hand sidéeRHS) of Eq. (2) is also

S, nonlineal. These systems may exhibit anomalous Lyapunov
x=Fx(t),x(t— 7)) (1) exponents, which do not depend on the delay value, in con-
trast to Eq(2) (whose exponents scale like the inverse of the
are largely employed to model control processes in the nadelay valug. For Bernoulli-like delayed maps, the authors of
ture and technology. Examples of successful models usingll] derive a closed form of the Lyapunov exponents spec-
delayed differential equations can be found in the fields offum in the limit of high delays. By summing up the positive
physiology[1,2], biology[3], laser physic§4], and economy  Part of this spectrum the boundedness of the metric entropy
[5]. Recently, a better treatment of experimental data fronf@n be shown. The same argument is valid for any piecewise
delayed systems has been made possible by methods tHiar map with constant Jacobian.
allow a complete and accurate characterization of the chaotic " the present work we provide more general arguments
attractorg[6]. Besides this relevance in the applied sciencesf the boundedness of the metric entropy of chaotic attrac-
delayed dynamical systems have interesting dynamical pro ors in delayed systems. We restrict our analys!s to dele_lyeq
erties. The phase space of Ef) is infinite dimensional and maps and construct the arguments on the basis of periodic

therefore hiah dimensional chaotic atiractors mav a eaPrbits' It is well known that the unstable periodic orbits form
o igh di : S : Y appealy syeleton of the chaotic motion and that the natural measure
Additionally it is found empirically that the Lyapunov di-

. . . . . can be characterized by these orbits under certain conditions
mension grows linearly with the delay while the metric en-115 13, Therefore it is natural to expect that the study of
tropy remains boundef—9] in the large delay limit. This  periodic orbits of delayed systems provides insight in their
behavior is related to the scaling properties of the Lyapunoyppological and metric properties. Indeed, through general
spectrum. properties of periodic orbits of delayed systems, we provide
In Ref.[10], a conjecture is proposed to explain the scal-an heuristic argument on the boundedness of topological en-
ing behavior of the Kaplan-Yorke dimension for delayedtropy in the limit of large delays. In the case of piecewise

systems of the form linear delayed maps a more rigorous argument is provided.
The paper is organized as follows. In Sec. Il we describe
X(t) = yx(t) + f(x(t— 7). (2)  the properties of periodic orbits for a general delayed map

and basing on them propose a bound for the topological en-

The authors observe that the autocorrelation time of the feedfOPY- In Sec. lll, piecewise linear delayed maps and their
back(denoted ash) is independent and much smaller than topological entropies are discussed using the Bernoulli-like
in the limit y7>1, with y<1. They conjecture that the num- Map as an example. In Sec. IV the topological entropy is
ber of active degrees of freedom would then be proportionafStimated for an Heon-like delayed map and in Sec. V we
to 7/ 8 which explains the linear increasing of the dimensionPresent discussions and conclusions.

with the delay value. The entropy is considered as the aver- . PERIODIC ORBITS AND THE TOPOLOGICAL

ENTROPY

*Electronic address: elis@mpipks-dresden.mpg.de Consider a general form of a delayed map with a single
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Xn+1=F(Xn Xn-1), ©) i.e., it depends op weaker than exponentially. If we com-
bine Eq.(9) and Eq.(6) we get the exact equations
whereT is an integer delay value. In contrast to finite dimen-
sional flows, the technique of the Poincatgface of section C(p,T)exd ph(T)]=N(p,T)
does not yield, in general, a direct relationship between de-
layed maps and delayed differential equations. In spite of =N(p,T+2p)
this, one might argue that delayed maps share essential er- =C(p,T+2p)exd ph(T+2p)]
godic properties with delayed time continuous equations of
motion. (1)
A p-periodic orbit of the systeng3) is given by a se-

quence of point$xy,X1,X;, . . . Xp_1} (later called periodic

pointy, which repeats in time as E§3) is iterated. These 20T 20h(T)1=N(2p.T
points obey the equations C(2p.Tyexd 2ph(T)]=N(2p.T)

_ N =N(2p,T+2p)
Xi+1=F(Xi X -1) 4
T = C(2p,T+2p)ex 2ph(T+2p)].
for O=<i<p-—1, with the boundary condition (12)
%:F&pflypfl*)* ®  Hence
where the indices are understood modulo the pepiod
For anyp, Egs.(4) and(5) are invariant under the trans- mexqphg)]: Mexqph(T+ 2p)]

formation T—T+np, neZ of the delay value. Periog- C(p,T) C(p,T+2p)
orbits found for a delay valu& will be exactly the same as (13

those forT=T-np, as long a andT are both positive, As follows. Therefore our final result can be written as
a consequence, one has the following relation for the

p-periodic points of the map: h(T+ 2p) = h(T) + INnC(2p,T)—InC(p,T)
N(p.T)=N(p,T-+np), (6) P p

whereN(p,T) denotes the number gtperiodic points for a _InC(2p,T+2p)—InC(p,T+2p) (14)

delayT. It is possible to show that a similar property is also p '

valid for delayed differential equatiorid4].
We are going to use this relation to estimate the topologiif the third term in the RHS of Eq(14) is bounded, one
cal entropy of the may3). It is well known that under cer- should expect that in the limip—c the entropyh(=) is
tain mathematical conditions the topological entropy can beinite.
related to the number of periodic points of a njap,16: All our previous expressions are valid for arbitraryand
p. In our final argument we have used the assumption that to
h(T)=lim su InN(p,T) . (77  some extent the limi¢10) is uniform in the delay time. Such
posce p an assumption cannot be proven in the general case and we
will have a closer look on this issue within the discussion of
As a consequence of E(), we derive a heuristic argument, our examples. Nevertheless, under such a quite general as-
why the topological entropy should be bounded in the limitsumption the topological entropy remains bounded in the
of large delay. We simply insert the asymptotic relationlimit of large delay time.

N(p,T)=exdph(T)] in Eq. (6),
exph(T)]=exgph(T-np)]=exph(T)]. (@ lll. PIECEWISE LINEARSI\l_/:I/T:I_DrS—THE BERNOULLI

In the limit p—, alsoT—o so that the topological entropy In order to illustrate the ideas above, we show the results

must be bounded. But this argument is very rough since itoncerning periodic orbits of a specific delayed map: the

suggests that the entropy does not depend anm all. Bernoulli shift studied in Ref[11]. For this purpose we re-
To improve this consideration we have to take into ac-strict to a special type of delayed map, namely,

count prefactors. For a finite perigrl we have the relation

N(p,T)=C(p,T)exd ph(T)], ©)
o . which mimics to some extent the coupling known from uni-
where in view of Eq(7) the prefactor obeys the constraint jirectional coupled map lattices. Here the parametgov-
InC(p,T) erns the strength of the delay term. The special structure of
lim su =0, (100  Eq. (15 ensures that the dynamics is well defined irrespec-
P tive of the type of the particular map.

Xn+1= (1= €)F(Xn) + €F(Xn_7), (15
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There are two simple cases where the topological entropy 0.7
can be evaluated by inspection. First considerg0, the
system turns out to be a one-dimensional map and the topo-
logical entropy is equal to that of the m&p In the opposite
case,e=1, Eq.(15) reduces tol +1 independent copies of
the mapF acting on the time scal&+ 1. Hence, ifN(k,0)
denotes the number of periddpoints of the mag-, then by
combinatoricg15) with e=1 hasN(p,T)=N(k,0)" " peri-
odic points of periodp=k(T+1). Taking the limitk—oo,

Eq. (7) yields again the topological entropy, per unit time, of 0.4
the single mag-.

For intermediate values &f, no general reasoning seems
to be available. We, therefore, now specialize to the Ber- FIG. 1. Estimated topological and metric entropids,§ and
noulli map hys, respectively for the Bernoulli shift withT=1. Metric entro-

pies have been estimated from the Lyapunov spectrum using Pesins

F(x)=2x—sgnx), xe[—1,1]. (16) identity and topological entropy by M(p,1)/p with p=25. The

inset shows the estimates of topological entropy as a function of the
Since the map is piecewise linear the periodic points of Eqperiod fore=0.2 (solid line) and e=0.75 (dashed ling
(15 can be easily estimated. Consider an orbit of period
P X0 X1, - - . !X_p—l- Then by o :=sgnfx,) we can assign a Ing can be detected which is related to the time scale set by
periodp symbol sequence to this orbit. This assignment isthe delayT. First of all, if we consider periodic points of
injective, i.e., there exists at most one perjpdrbit for each  period p=T, then because of,_t=x, Eq. (15 reduces to
periodp symbol sequence: combining Ed.5) and Eq.(16)  the single mag-. Hence the delayed system admits the same
the periodic orbit is determined by number of periodic points of ordgr=T as the single map.

A similar feature occurs for periods=T+ 1. Here because

Xns1=2(1— €)Xp+ eXp1— (1—€)on—€on_t (A7)  0Of Xq_1=Xns1, EQ. (17) reduces to

2
>

I3
EY

In[N(p)Vp

Entropies

and such a linear inhomogeneous equation has at most
one solution that satisfies the self-consistency condition 0=<|Xp|= 5 (1+ 0000+ 1)
sgn() = o for a given symbol sequenegy,oq, . .. ,0p1.
Hence the number of periga-points obeys

N -

1-2¢
+ m(—ffn(fnﬂ)(l— Xn41). (19
N(p,T)<2P (18)

Except for the fixed points the produet,o, ., takes the
and the topological entropy of the single mipyields an  value—1 for at least on@ and the conditior{19) is violated
upper bound for the entropy of E(L5). if e=1/2. Otherwise, ife<1/2 then Eq.(19) yields a con-

Since the topological entropy yields an upper bound fortraction on[0,1] so that all symbol sequences are allowed.
any type of Kolmogorov Sinai entropyl5], the result im-  Hence ifp is a prime factor ofT+1 then no prime orbit of
plies that all these entropies are bounded in the limit of larggeriod p appears ife=1/2 but all prime orbits of periog
delay. Such a result is in accordance with results obtained ogppear ife<1/2. Therefore, pruning rules depend sensitively
the basis of Lyapunov spectfdl] and illustrates that the on the fine tuning of the coefficients of the delay term. For-
entropies in contrast with dimensions do not increase withunately these features do not corrupt the upper bound for the
the delay time. topological entropy, but an accurate estimation of the en-

In Fig. 1 we compare numerically obtained values of thetropy from counting periodic orbits seems to be difficult. In
topological entropy and the Kolmogorov Sinai entropy forthe Fig. 2 these pruning rules can be seen in the case of
T=1 and different values o¢. T=11.

For this particular model the exact values of both entro-
pies coincide since the Jacobian is constant. A proof for this IV. HE NON MAP
statement is based on the absence of multifractality in the ’
system, i.e., all the Rwi entropies can be shown to have the  To gain a little bit more insight into the geometry of de-
same value. Thus the difference visible in Fig. 1 yields thdayed maps we investigate a modification of the well-known
accuracy for the method by which the topological entropyHenon map with delayed feedback
was estimated. Apart from deviations near the minimum, the
topological entropy was accurately recovered. In fact near xn+1=a—xﬁ+ bx,_ . (20
such a minimum we expect quite dramatic topological
changes that prevent a good convergence of the estimates lbfcorresponds to the usual Hen map ifT=1. Our goal is
hiop based on Eq(7). again to study the properties of periodic orbits as the delay

A slightly more detailed analysis is possible based on ahanges. In particular, we will determine their number for
numerical evaluation of Eq17). Here a severe kind of prun- estimating the topological entropy and study their stability.
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FIG. 2. Number of prime orbits as a function of the period
Np(p) for the map(16) for T=11, €=0.45, ande=0.5(empty and FIG. 3. Convergence of the topological entropy with finite val-
filled circles, respectively ues of period foiT=6 (solid line) and T=15 (dashed lingfor the

Henon map witha=1.0, b=0.3.

We have used the method proposefiliii] to compute the
periodic orbits of the maf20), which was shown to be valid cating the set at a givemand fitting the data to E9), we
for the normal Haon map for low values of the parameter obtain the estimates for the entropyd¥,p) shown in
in [18]. The method is originally proposed for the two- Fig. 3.
dimensional map, but is easily extended to be applied in this For the delay valueT=6 in Fig. 3 one can see that
system. We have evidence that most of the orbits can bb(T,p) has a large peak @t=T+ 1 followed by oscillations
recovered by the modified method, but we cannot guarantearound an average value. The same pattern was observed for
that all orbits are really detected. Moreover, we have nmther low delay values not shown in Fig. 3 and seems to be
proof that a binary partitior{a partition consisting of two a general feature for this model. Therefore, we can expect
elementg16,18) exists for the high dimensional case, which satisfactory convergence of the topological entropy only for
is one of the requirements for this method to work. Despitep>T+ 1. The results in Table | were obtained by the aver-
of these potential problems, we were able to obtain estimatesge of all valueh(T,p) such thatp>T+ 1.
of the topological entropy from Eq.7) that we show in The observed pattern is quite similar to the case of the
Table | for different delay values. Comparing the estimatedBernoulli maps. It has its origin in the number of periodic
topological entropies with the metric entropies calculatedpoints of periodp=T+1. In fact, N(p=T+1,T) equals 2
from the Lyapunov exponents we observe that the valueas can be evaluated from E@O0). For orbits with periocp
agree within the error bai@xcept forT=6, but in this case =T+ 1 Eq.(20) reduces to
the inequalityh,,=h,s is also observed

Although these results are limited to relatively low delay (1-b)Xp 1 =a—X2. (22)
values, they show an important property: the topological en-
tropy agrees with the value of the corresponding metric eny.
tropy and moreover, its value does not grow as the dela)é.
grows but seems to be bounded. In that respect the modg
seems to share the properties of the Bernoulli system.

In order to understand why the error bars in Table | in- For p=n(T+1) there are also local maxima in the num-

crease with the delqy, lets us Inspect the convergence PrOBer of periodic points but their values are much smaller than
erties of the topologlcgl entropy. Estimates for the tqpplog|—2n(T+1) and we could not find a simple general rule for them
cal entropy were obtained using the data sets containing thle '

periods and the respective number of periodic points. Trun-n Fig. 4, these features are illustrated for delays 6 and 15.

fter linear rescaling, Eq.21) can be cast into the form of a
ngle logistic map with parameter/(1—b)?. As long as
1(1—Db)?>2 this map has a full set of periodic points giv-
ing rise to the just-mentioned phenomenon.

10°
TABLE I. Topological and metric entropies of the modeD)
with parametersa=1.0 andb=0.3. Metric entropies have been 10° — T=6
estimated from the Lyapunov spectrum using Pesins identity. oo T8
= 10°
o
T htop hks I::
Z 10
3 0.21+0.05 0.194
5 0.14+0.02 0.134 10’
6 0.13+0.03 0.085
10° - ' -
8 0.13+0.04 0.120 0 0 10 20 20
10 0.11x-0.04 0.120 p
12 0.13-0.04 0.114
15 0.09+0.04 0.116 FIG. 4. Number of p-periodic points fdr=6 (filled circles and

T=15 (empty circle$ of Eq. (20) with a=1.0, b=0.3 .
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TABLE II. Total number of prime orbits of periog[Np(p)] 15
and number of orbits with two-dimensional unstable manifdid)(
for the Haon map witha=1.0, b=0.3, andT = 10. (Prime orbits ’
are those that do not consist on repetitions of cycles of shorter 10 | ,........4'.
period) /

;
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p Np(p) N 5| o
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1 2

2 1
11 186
15 6
22 128
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So far, our results on the topological properties are quite ,
in line with the investigation of the Bernoulli maps. Let us oo
now have a closer look on the stability properties of certain
periodic orbits of the mag20). This is neither necessary nor o o~
interesting in the case of Bernoulli maps since they have a o
constant Jacobian and all the orbits have the same stability 10 o
properties. g

Due to the property that ang-periodic orbit existent for 0o - . - ,
delay T, will be also ap-periodic orbit for delayT +np, we o0 2 4w T 60 & 100
can study how the stabilities of these orbits change when the
delay increases according to this rule. The stabilities of the FIG. 5. Dimension of the unstable manifott),,, (above and
orbits are fully described by theilf+np+1 Lyapunov ex- Kaplan-Yorke dimensioml, (below for the period-2 orbit of Eqg.
ponents, withn=0,1,2 . .. . Themain result is that we can (20) with a=1.0, b=0.3, existent for even values dfas a func-
divide the orbits into two categories according to the behaviion of the delay.

ior of the dimension of their unstable manifolsumber of finite if only the anomalous exponent determines the un-

positive Lyapunov exponentsinder variation of. stable manifold. Since the IHen map has nonconstant Jaco-

On the one hand, there are orbits for which the dimensionyia, hoth types of orbits may appear for the same parameter
of the unstable manifold does not increase with the delay. A§etting simultaneously.

an example let us consider the periodic orbits for the map | ot s mention finally how the characteristics of the full

(20), with a=1.0,b=0.3, andT=10. In Table Il we show  .pantic attractor of the map at our parameter settings changes
the periodic orbits detected by the Biham-Wenzel method up

to period p=29. We have observed that in this case, the 20
orbits, whose unstable manifolds have dimension equal to
one, are the vast majority of the computed orbits. For many
of these orbits the dimension of the unstable manifold does
not change if the delay is increased fromto T+ p, the
corresponding positive Lyapunov exponent stays isolated,
and the remaining part of their spectrum is negative. Adopt-
ing the same notation as itt1] we may call such an unstable
exponent an anomalous one.

On the other hand there exist orbits for which the dimen-
sion of the unstable manifold increases with the delay. These
orbits show up at=1.0, b=0.3, andT=10 with a two-
dimensional unstable manifold. Although their number is
very small compared to the orbits with one-dimensional un-
stable manifold, the second kind of orbits constitute in gen-
eral the less unstable. In particular, we find an increasing
unstable dimension as the delay increases. For instance, Fig.
5 displays this increase for the period 2 orbit of Table Il that
exists for all-even values of the delay. 0 Lii— . ' . : :

All these observations are on a qualitative level in accor- 0 10 20 30 40 50 60 70
dance with the analysis of the Bernoulli md]. Whenever
the quasicontinuous spectrum of exponents contributes to the FIG. 6. Dependence of the Kaplan-Yorke dimensigpand the
unstable exponents, the dimension of the unstable manifoldumber of unstable Lyapunov exponents on the d&l&yr the map
increases linearly with delay, whereas the dimension stay&0) with a=1.0, b=0.3.

.
e v e R esttnsty ety 0yete, 000 0erstresirr®oeytnoeed

0.1
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with the delay value(cf. Fig. 6. The number of positive rithm of the number of elements of the partition. For a binary
Lyapunov exponents grows as the delay increases althouggartition, the upper bound is;,,<In2. We should remark,
the increase is weaker than for the Kaplan-Yorke dimensiorhowever, that the grammathe pruning rules governing the
This is of course not astonishing since the weakly stablexistence or absence of a given sequgrateanges as the
directions also contribute to the Kaplan-Yorke dimension. Itdelay is varied. By analyzing numerically the delayecbie
would be tempting to find out whether the main contributionmap, we are tempted to believe that the existence of a finite
to the dimension of the attractor comes from orbits withpartition is not altered by changing the delay also in the case
increasing unstable dimension or from the weakly stableof nonlinear maps.

quasicontinuous part of the spectrum. There are several natural extensions of this work possible
that go beyond a pure topological characterization of systems
V. CONCLUSIONS with delay. One may check in terms of cycle expansions to

] . o what extent periodic orbits with different dimensions of un-
_In summary, we derived some properties of periodic or-staple manifolds contribute to the dynamics of chaotic attrac-
bits of delayed maps that allowed us to propose two arguors, Since certain types of periodic orbits exist regardless of
ments for the boundedness of the topological entropy in thene specific delay value it is tempting to check whether met-
high delay limit. The first argument is more general andyic properties like Lyapunov exponents, Kolmogorov Sinai
could apply also to continuous time delayed systems, as theniropies, and dimensions are mainly influenced by these
relation(6) is also valid in this case. The second argument isyrpits in the high delay limit. This is a natural assumption as

restricted to piecewise linear maps, but it gives a more inthe orpits reappear at different delay values, but yet we do
sightful understanding: if the generating partition of a piecéypt have no proof for such statements.

wise linear map is binary at low delays it will be also binary
at higher delays. In other words, the number of elements of
the generating partition, in this case, is not affected by
changing the delay value. This argument gives naturally an We are grateful to R. Hegger for the valuable suggestions.
upper bound for the topological entropy, namely the logaE.F.M. acknowledges the financial support from DAAD.
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