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Periodic orbits and topological entropy of delayed maps
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The periodic orbits of a nonlinear dynamical system provide valuable insight into the topological and metric
properties of its chaotic attractors. In this paper we describe general properties of periodic orbits of dynamical
systems with feedback delay. In the case of delayed maps, these properties enable us to provide general
arguments about the boundedness of the topological entropy in the high delay limit. As a consequence, all the
metric entropies can be shown to be bounded in this limit. The general considerations are illustrated in the
cases of Bernoulli-like and He´non-like delayed maps.
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I. INTRODUCTION

As the mechanism of retarded feedback is present in
most all situations associated with finite propagation tim
delayed differential equations of the form

xẆ5FW „xW~ t !,xW~ t2t!… ~1!

are largely employed to model control processes in the
ture and technology. Examples of successful models u
delayed differential equations can be found in the fields
physiology@1,2#, biology @3#, laser physics@4#, and economy
@5#. Recently, a better treatment of experimental data fr
delayed systems has been made possible by methods
allow a complete and accurate characterization of the cha
attractors@6#. Besides this relevance in the applied scienc
delayed dynamical systems have interesting dynamical p
erties. The phase space of Eq.~1! is infinite dimensional and
therefore high dimensional chaotic attractors may app
Additionally it is found empirically that the Lyapunov di
mension grows linearly with the delay while the metric e
tropy remains bounded@7–9# in the large delay limit. This
behavior is related to the scaling properties of the Lyapu
spectrum.

In Ref. @10#, a conjecture is proposed to explain the sc
ing behavior of the Kaplan-Yorke dimension for delay
systems of the form

ẋ~ t !5gx~ t !1 f „x~ t2t!…. ~2!

The authors observe that the autocorrelation time of the fe
back~denoted asd) is independent and much smaller thant
in the limit gt@1, with g,1. They conjecture that the num
ber of active degrees of freedom would then be proportio
to t/d which explains the linear increasing of the dimensi
with the delay value. The entropy is considered as the a
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age amount of information stored during the memory timed
and this explains also the independence of the entropy w
respect to the delay time.

More recently, delayed systems with nonlinear instan
neous coupling are investigated@11# @systems for which the
first term on the right-hand side~RHS! of Eq. ~2! is also
nonlinear#. These systems may exhibit anomalous Lyapun
exponents, which do not depend on the delay value, in c
trast to Eq.~2! ~whose exponents scale like the inverse of t
delay value!. For Bernoulli-like delayed maps, the authors
@11# derive a closed form of the Lyapunov exponents sp
trum in the limit of high delays. By summing up the positiv
part of this spectrum the boundedness of the metric entr
can be shown. The same argument is valid for any piecew
linear map with constant Jacobian.

In the present work we provide more general argume
for the boundedness of the metric entropy of chaotic attr
tors in delayed systems. We restrict our analysis to dela
maps and construct the arguments on the basis of peri
orbits. It is well known that the unstable periodic orbits for
a skeleton of the chaotic motion and that the natural mea
can be characterized by these orbits under certain condit
@12,13#. Therefore it is natural to expect that the study
periodic orbits of delayed systems provides insight in th
topological and metric properties. Indeed, through gene
properties of periodic orbits of delayed systems, we prov
an heuristic argument on the boundedness of topological
tropy in the limit of large delays. In the case of piecewi
linear delayed maps a more rigorous argument is provid

The paper is organized as follows. In Sec. II we descr
the properties of periodic orbits for a general delayed m
and basing on them propose a bound for the topological
tropy. In Sec. III, piecewise linear delayed maps and th
topological entropies are discussed using the Bernoulli-
map as an example. In Sec. IV the topological entropy
estimated for an He´non-like delayed map and in Sec. V w
present discussions and conclusions.

II. PERIODIC ORBITS AND THE TOPOLOGICAL
ENTROPY

Consider a general form of a delayed map with a sin
delay,
©2001 The American Physical Society03-1
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xn115F~xn ,xn2T!, ~3!

whereT is an integer delay value. In contrast to finite dime
sional flows, the technique of the Poincare´ surface of section
does not yield, in general, a direct relationship between
layed maps and delayed differential equations. In spite
this, one might argue that delayed maps share essentia
godic properties with delayed time continuous equations
motion.

A p-periodic orbit of the system~3! is given by a se-
quence of points$x̄0 ,x̄1 ,x̄2 , . . . ,x̄p21% ~later called periodic
points!, which repeats in time as Eq.~3! is iterated. These
points obey the equations

x̄i 115F~ x̄i ,x̄i 2T! ~4!

for 0< i ,p21, with the boundary condition

x̄05F~ x̄p21 ,x̄p212T!, ~5!

where the indices are understood modulo the periodp.
For anyp, Eqs.~4! and ~5! are invariant under the trans

formation T°T1np, nPZ of the delay value. Period-p
orbits found for a delay valueT will be exactly the same a
those forT̃5T1np, as long asT̃ andT are both positive. As
a consequence, one has the following relation for
p-periodic points of the map:

N~p,T!5N~p,T1np!, ~6!

whereN(p,T) denotes the number ofp-periodic points for a
delayT. It is possible to show that a similar property is al
valid for delayed differential equations@14#.

We are going to use this relation to estimate the topolo
cal entropy of the map~3!. It is well known that under cer-
tain mathematical conditions the topological entropy can
related to the number of periodic points of a map@15,16#:

h~T!5 lim sup
p→`

ln N~p,T!

p
. ~7!

As a consequence of Eq.~6!, we derive a heuristic argumen
why the topological entropy should be bounded in the lim
of large delay. We simply insert the asymptotic relati
N(p,T).exp@ph(T)# in Eq. ~6!,

exp@ph~T!#.exp@ph~T1np!#5exp@ph~ T̃!#. ~8!

In the limit p→`, alsoT̃→` so that the topological entrop
must be bounded. But this argument is very rough sinc
suggests that the entropy does not depend onT at all.

To improve this consideration we have to take into a
count prefactors. For a finite periodp, we have the relation

N~p,T!5C~p,T!exp@ph~T!#, ~9!

where in view of Eq.~7! the prefactor obeys the constrain

lim sup
p→`

ln C~p,T!

p
50, ~10!
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i.e., it depends onp weaker than exponentially. If we com
bine Eq.~9! and Eq.~6! we get the exact equations

C~p,T!exp@ph~T!#5N~p,T!

5N~p,T12p!

5C~p,T12p!exp@ph~T12p!#

~11!

and

C~2p,T!exp@2ph~T!#5N~2p,T!

5N~2p,T12p!

5C~2p,T12p!exp@2ph~T12p!#.

~12!

Hence

C~2p,T!

C~p,T!
exp@ph~T!#5

C~2p,T12p!

C~p,T12p!
exp@ph~T12p!#

~13!

follows. Therefore our final result can be written as

h~T12p!5h~T!1
ln C~2p,T!2 ln C~p,T!

p

2
ln C~2p,T12p!2 ln C~p,T12p!

p
. ~14!

If the third term in the RHS of Eq.~14! is bounded, one
should expect that in the limitp→` the entropyh(`) is
finite.

All our previous expressions are valid for arbitraryT and
p. In our final argument we have used the assumption tha
some extent the limit~10! is uniform in the delay time. Such
an assumption cannot be proven in the general case an
will have a closer look on this issue within the discussion
our examples. Nevertheless, under such a quite genera
sumption the topological entropy remains bounded in
limit of large delay time.

III. PIECEWISE LINEAR MAPS—THE BERNOULLI
SHIFT

In order to illustrate the ideas above, we show the res
concerning periodic orbits of a specific delayed map:
Bernoulli shift studied in Ref.@11#. For this purpose we re
strict to a special type of delayed map, namely,

xn115~12e!F~xn!1eF~xn2T!, ~15!

which mimics to some extent the coupling known from un
directional coupled map lattices. Here the parametere gov-
erns the strength of the delay term. The special structur
Eq. ~15! ensures that the dynamics is well defined irresp
tive of the type of the particular map.
3-2
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There are two simple cases where the topological entr
can be evaluated by inspection. First consideringe50, the
system turns out to be a one-dimensional map and the t
logical entropy is equal to that of the mapF. In the opposite
case,e51, Eq. ~15! reduces toT11 independent copies o
the mapF acting on the time scaleT11. Hence, ifN(k,0)
denotes the number of period-k points of the mapF, then by
combinatorics~15! with e51 hasN(p,T)5N(k,0)T11 peri-
odic points of periodp5k(T11). Taking the limitk→`,
Eq. ~7! yields again the topological entropy, per unit time,
the single mapF.

For intermediate values ofe, no general reasoning seem
to be available. We, therefore, now specialize to the B
noulli map

F~x!52x2sgn~x!, xP@21,1#. ~16!

Since the map is piecewise linear the periodic points of
~15! can be easily estimated. Consider an orbit of per
p,x̄0 ,x̄1 , . . . ,x̄p21. Then byskªsgn(x̄k) we can assign a
period-p symbol sequence to this orbit. This assignmen
injective, i.e., there exists at most one period-p orbit for each
period-p symbol sequence: combining Eq.~15! and Eq.~16!
the periodic orbit is determined by

x̄n1152~12e!x̄n1e x̄n2T2~12e!sn2esn2T ~17!

and such a linear inhomogeneous equation has at m
one solution that satisfies the self-consistency condi
sgn(x̄k)5sk for a given symbol sequences0 ,s1 , . . . ,sp21.
Hence the number of period-p points obeys

N~p,T!<2p ~18!

and the topological entropy of the single mapF yields an
upper bound for the entropy of Eq.~15!.

Since the topological entropy yields an upper bound
any type of Kolmogorov Sinai entropy@15#, the result im-
plies that all these entropies are bounded in the limit of la
delay. Such a result is in accordance with results obtained
the basis of Lyapunov spectra@11# and illustrates that the
entropies in contrast with dimensions do not increase w
the delay time.

In Fig. 1 we compare numerically obtained values of t
topological entropy and the Kolmogorov Sinai entropy f
T51 and different values ofe.

For this particular model the exact values of both ent
pies coincide since the Jacobian is constant. A proof for
statement is based on the absence of multifractality in
system, i.e., all the Re´nyi entropies can be shown to have t
same value. Thus the difference visible in Fig. 1 yields
accuracy for the method by which the topological entro
was estimated. Apart from deviations near the minimum,
topological entropy was accurately recovered. In fact n
such a minimum we expect quite dramatic topologi
changes that prevent a good convergence of the estimat
htop based on Eq.~7!.

A slightly more detailed analysis is possible based o
numerical evaluation of Eq.~17!. Here a severe kind of prun
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ing can be detected which is related to the time scale se
the delayT. First of all, if we consider periodic points o
period p5T, then because ofx̄n2T5 x̄n Eq. ~15! reduces to
the single mapF. Hence the delayed system admits the sa
number of periodic points of orderp5T as the single mapF.
A similar feature occurs for periodsp5T11. Here because
of x̄n2T5 x̄n11, Eq. ~17! reduces to

0<uxnu5
1

2
~11snsn11!

1
122e

2~12e!
~2snsn11!~12uxn11u!. ~19!

Except for the fixed points the productsnsn11 takes the
value21 for at least onen and the condition~19! is violated
if e*1/2. Otherwise, ife,1/2 then Eq.~19! yields a con-
traction on@0,1# so that all symbol sequences are allowe
Hence ifp is a prime factor ofT11 then no prime orbit of
period p appears ife*1/2 but all prime orbits of periodp
appear ife,1/2. Therefore, pruning rules depend sensitive
on the fine tuning of the coefficients of the delay term. F
tunately these features do not corrupt the upper bound for
topological entropy, but an accurate estimation of the
tropy from counting periodic orbits seems to be difficult.
the Fig. 2 these pruning rules can be seen in the cas
T511.

IV. HÉ NON MAP

To gain a little bit more insight into the geometry of d
layed maps we investigate a modification of the well-kno
Hénon map with delayed feedback

xn115a2xn
21bxn2T . ~20!

It corresponds to the usual He´non map ifT51. Our goal is
again to study the properties of periodic orbits as the de
changes. In particular, we will determine their number
estimating the topological entropy and study their stabilit

FIG. 1. Estimated topological and metric entropies (htop and
hks , respectively! for the Bernoulli shift withT51. Metric entro-
pies have been estimated from the Lyapunov spectrum using P
identity and topological entropy by lnN(p,1)/p with p525. The
inset shows the estimates of topological entropy as a function of
period fore50.2 ~solid line! ande50.75 ~dashed line!.
3-3



-
th

b
nt
n

h
it

at

te
te
ue

ay
en
en
la
od

in
ro
g
t

un

t

d for
be
ect
for
er-

the
ic

-

-
an

m.
5.

od

n

l-

E. FERRETTI MANFFRA, H. KANTZ, AND W. JUST PHYSICAL REVIEW E63 046203
We have used the method proposed in@17# to compute the
periodic orbits of the map~20!, which was shown to be valid
for the normal He´non map for low values of the parameterb
in @18#. The method is originally proposed for the two
dimensional map, but is easily extended to be applied in
system. We have evidence that most of the orbits can
recovered by the modified method, but we cannot guara
that all orbits are really detected. Moreover, we have
proof that a binary partition~a partition consisting of two
elements@16,18#! exists for the high dimensional case, whic
is one of the requirements for this method to work. Desp
of these potential problems, we were able to obtain estim
of the topological entropy from Eq.~7! that we show in
Table I for different delay values. Comparing the estima
topological entropies with the metric entropies calcula
from the Lyapunov exponents we observe that the val
agree within the error bars~except forT56, but in this case
the inequalityhtop>hks is also observed!.

Although these results are limited to relatively low del
values, they show an important property: the topological
tropy agrees with the value of the corresponding metric
tropy and moreover, its value does not grow as the de
grows but seems to be bounded. In that respect the m
seems to share the properties of the Bernoulli system.

In order to understand why the error bars in Table I
crease with the delay, lets us inspect the convergence p
erties of the topological entropy. Estimates for the topolo
cal entropy were obtained using the data sets containing
periods and the respective number of periodic points. Tr

FIG. 2. Number of prime orbits as a function of the peri
Np(p) for the map~16! for T511, e50.45, ande50.5 ~empty and
filled circles, respectively!.

TABLE I. Topological and metric entropies of the model~20!
with parametersa51.0 andb50.3. Metric entropies have bee
estimated from the Lyapunov spectrum using Pesins identity.

T htop hks

3 0.2160.05 0.194
5 0.1460.02 0.134
6 0.1360.03 0.085
8 0.1360.04 0.120

10 0.1160.04 0.120
12 0.1360.04 0.114
15 0.0960.04 0.116
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cating the set at a givenp and fitting the data to Eq.~9!, we
obtain the estimates for the entropy—h(T,p) shown in
Fig. 3.

For the delay valueT56 in Fig. 3 one can see tha
h(T,p) has a large peak atp5T11 followed by oscillations
around an average value. The same pattern was observe
other low delay values not shown in Fig. 3 and seems to
a general feature for this model. Therefore, we can exp
satisfactory convergence of the topological entropy only
p.T11. The results in Table I were obtained by the av
age of all valuesh(T,p) such thatp.T11.

The observed pattern is quite similar to the case of
Bernoulli maps. It has its origin in the number of period
points of periodp5T11. In fact,N(p5T11,T) equals 2p

as can be evaluated from Eq.~20!. For orbits with periodp
5T11 Eq. ~20! reduces to

~12b!x̄n115a2 x̄n
2 . ~21!

After linear rescaling, Eq.~21! can be cast into the form of a
single logistic map with parametera/(12b)2. As long as
a/(12b)2.2 this map has a full set of periodic points giv
ing rise to the just-mentioned phenomenon.

For p5n(T11) there are also local maxima in the num
ber of periodic points but their values are much smaller th
2n(T11) and we could not find a simple general rule for the
In Fig. 4, these features are illustrated for delays 6 and 1

FIG. 3. Convergence of the topological entropy with finite va
ues of period forT56 ~solid line! andT515 ~dashed line! for the
Hénon map witha51.0, b50.3.

FIG. 4. Number of p-periodic points forT56 ~filled circles! and
T515 ~empty circles! of Eq. ~20! with a51.0, b50.3 .
3-4
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So far, our results on the topological properties are qu
in line with the investigation of the Bernoulli maps. Let u
now have a closer look on the stability properties of cert
periodic orbits of the map~20!. This is neither necessary no
interesting in the case of Bernoulli maps since they hav
constant Jacobian and all the orbits have the same stab
properties.

Due to the property that anyp-periodic orbit existent for
delayT, will be also ap-periodic orbit for delayT1np, we
can study how the stabilities of these orbits change when
delay increases according to this rule. The stabilities of
orbits are fully described by theirT1np11 Lyapunov ex-
ponents, withn50,1,2, . . . . Themain result is that we can
divide the orbits into two categories according to the beh
ior of the dimension of their unstable manifolds~number of
positive Lyapunov exponents! under variation ofn.

On the one hand, there are orbits for which the dimens
of the unstable manifold does not increase with the delay
an example let us consider the periodic orbits for the m
~20!, with a51.0, b50.3, andT510. In Table II we show
the periodic orbits detected by the Biham-Wenzel method
to period p529. We have observed that in this case,
orbits, whose unstable manifolds have dimension equa
one, are the vast majority of the computed orbits. For m
of these orbits the dimension of the unstable manifold d
not change if the delay is increased fromT to T1p, the
corresponding positive Lyapunov exponent stays isola
and the remaining part of their spectrum is negative. Ado
ing the same notation as in@11# we may call such an unstabl
exponent an anomalous one.

On the other hand there exist orbits for which the dime
sion of the unstable manifold increases with the delay. Th
orbits show up ata51.0, b50.3, andT510 with a two-
dimensional unstable manifold. Although their number
very small compared to the orbits with one-dimensional
stable manifold, the second kind of orbits constitute in g
eral the less unstable. In particular, we find an increas
unstable dimension as the delay increases. For instance
5 displays this increase for the period 2 orbit of Table II th
exists for all-even values of the delay.

All these observations are on a qualitative level in acc
dance with the analysis of the Bernoulli map@11#. Whenever
the quasicontinuous spectrum of exponents contributes to
unstable exponents, the dimension of the unstable man
increases linearly with delay, whereas the dimension s

TABLE II. Total number of prime orbits of periodp@Np(p)#
and number of orbits with two-dimensional unstable manifold (N2)
for the Hénon map witha51.0, b50.3, andT510. ~Prime orbits
are those that do not consist on repetitions of cycles of sho
period.!

p Np(p) N2

1 2 0
2 1 1

11 186 0
15 6 0
22 128 6
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finite if only the anomalous exponent determines the
stable manifold. Since the He´non map has nonconstant Jac
bian, both types of orbits may appear for the same param
setting simultaneously.

Let us mention finally how the characteristics of the fu
chaotic attractor of the map at our parameter settings cha

FIG. 6. Dependence of the Kaplan-Yorke dimensiondky and the
number of unstable Lyapunov exponents on the delayT for the map
~20! with a51.0, b50.3.

er

FIG. 5. Dimension of the unstable manifolddum ~above! and
Kaplan-Yorke dimensiondky ~below! for the period-2 orbit of Eq.
~20! with a51.0, b50.3, existent for even values ofT as a func-
tion of the delay.
3-5
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with the delay value~cf. Fig. 6!. The number of positive
Lyapunov exponents grows as the delay increases altho
the increase is weaker than for the Kaplan-Yorke dimens
This is of course not astonishing since the weakly sta
directions also contribute to the Kaplan-Yorke dimension
would be tempting to find out whether the main contributi
to the dimension of the attractor comes from orbits w
increasing unstable dimension or from the weakly sta
quasicontinuous part of the spectrum.

V. CONCLUSIONS

In summary, we derived some properties of periodic
bits of delayed maps that allowed us to propose two ar
ments for the boundedness of the topological entropy in
high delay limit. The first argument is more general a
could apply also to continuous time delayed systems, as
relation~6! is also valid in this case. The second argumen
restricted to piecewise linear maps, but it gives a more
sightful understanding: if the generating partition of a pie
wise linear map is binary at low delays it will be also bina
at higher delays. In other words, the number of element
the generating partition, in this case, is not affected
changing the delay value. This argument gives naturally
upper bound for the topological entropy, namely the log
v

y
d

ys

-
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rithm of the number of elements of the partition. For a bina
partition, the upper bound ishtop< ln 2. We should remark,
however, that the grammar~the pruning rules governing th
existence or absence of a given sequence! changes as the
delay is varied. By analyzing numerically the delayed He´non
map, we are tempted to believe that the existence of a fi
partition is not altered by changing the delay also in the c
of nonlinear maps.

There are several natural extensions of this work poss
that go beyond a pure topological characterization of syste
with delay. One may check in terms of cycle expansions
what extent periodic orbits with different dimensions of u
stable manifolds contribute to the dynamics of chaotic attr
tors. Since certain types of periodic orbits exist regardles
the specific delay value it is tempting to check whether m
ric properties like Lyapunov exponents, Kolmogorov Sin
entropies, and dimensions are mainly influenced by th
orbits in the high delay limit. This is a natural assumption
the orbits reappear at different delay values, but yet we
not have no proof for such statements.
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